Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(10): e4773, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656811

RESUMO

Recent studies have suggested that neuropilin-1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS-CoV-2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS-CoV-2 spike (S) fragments, including the receptor-binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1-RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD-ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS-CoV-2 S trimer with a dissociation rate of 0.87 s-1 , four times lower than the dissociation rate of 3.65 s-1 between NRP1 and RBD. Moreover, additional experiments show that RBD-neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS-CoV-2 attachment to human cells, and the neutralizing antibodies targeting SARS-CoV-2 RBD can reduce the binding between SARS-CoV-2 and NRP1.


Assuntos
COVID-19 , Neuropilina-1 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/metabolismo , Simulação de Dinâmica Molecular , Neuropilina-1/química , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química
2.
Biophys J ; 120(6): 1011-1019, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33607086

RESUMO

The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30-40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Células HEK293 , Humanos , Modelos Biológicos , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula
3.
bioRxiv ; 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32766576

RESUMO

The current COVID-19 pandemic has already had a devastating impact across the world. SARS-CoV-2 (the virus causing COVID-19) is known to use its surface spike (S) protein's receptor binding domain (RBD) to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS epidemic. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes a combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approach to quantify the specific interactions between CoV-2 or CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between CoV-2 RBD and ACE2 range from 70 to 110 pN, and are 30-50% higher than those of CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After the removal of N-linked glycans on ACE2, its mechanical binding strength with CoV-2 RBD decreases to a similar level of the CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1, and could aid in the development of new strategies to block SARS-CoV-2 entry.

4.
Adv Mater ; 32(21): e1906970, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301207

RESUMO

Natural structural materials, such as bone, can autonomously modulate their mechanical properties in response to external loading to prevent failure. These material systems smartly control the addition/removal of material in locations of high/low mechanical stress by utilizing local resources guided by biological signals. On the contrary, synthetic structural materials have unchanging mechanical properties limiting their mechanical performance and service life. Inspired by the mineralization process of bone, a material system that adapts its mechanical properties in response to external mechanical loading is reported. It is found that charges from piezoelectric scaffolds can induce mineralization from surrounding media. It is shown that the material system can adapt to external mechanical loading by inducing mineral deposition in proportion to the magnitude of the stress and the resulting piezoelectric charges. Moreover, the mineralization mechanism allows a simple one-step route for fabricating functionally graded materials by controlling the stress distribution along the scaffold. The findings can pave the way for a new class of self-regenerating materials that reinforce regions of high stress or induce deposition of minerals on the damaged areas from the increase in mechanical stress to prevent/mitigate failure. It is envisioned that the findings can contribute to addressing the current challenges of synthetic materials for load-bearing applications from self-adaptive capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...